国产农村妇女一级毛片_亚洲一区二区高清_色综合天天综合高清网国产_亚洲国产综合专区在线电影

2013
05-27

電力半導體模塊發展新趨勢

  一種新型器件的誕生往往使整個裝置系統面貌發生巨大改觀,促進電力電子技術向前發展。自1957年第一個晶閘管問世以來,經過40多年的開發和研究,已推出可關斷晶閘管(GTO),絕緣柵雙極晶體管(IGBT)等40多種電力半導體器件,目前正沿著高頻化、大功率化、智能化和模塊化的方向發展,本文將簡要介紹模塊化發展趨勢。   所謂模塊,最初定義是把兩個或兩個以上的電力半導體芯片按一定電路聯成,用RTV、彈性硅凝膠、環氧樹脂等保護材料,密封在一個絕緣的外殼內,并與導熱底板絕緣而成。自上世紀70年代Semikron Nurmbeg把模塊原理(當時僅限于晶閘管和整流二極管)引入電力電子技術領域以來,因此模塊化就受到世界各國電力半導體公司的重視,開發和生產出各種內部電聯接形式的電力半導體模塊,如晶閘管、整流二極管、雙向晶閘管、逆導晶閘管、光控晶閘管、可關斷晶閘管、電力晶體管(GTR)、MOS可控晶閘管(MCT)、電力MOSFET以及絕緣柵雙極型晶體管(IGBT)等模塊,使模塊技術得到蓬勃發展,在器件中所占比例越來越大。   據美國在上世紀90年代初統計,在過去十幾年內,300A以下的分立晶閘管、整流二極管以及20A以上達林頓晶體管市場占有量已由90%降到20%,而上述器件的模塊卻由10%上升到80%,可見模塊發展之快。   隨著MOS結構為基礎的現代半導體器件研發的成功,亦即用電壓控制、驅動功率小、控制簡單的IGBT、電力MOSFET、MOS控制晶閘管(MCT)和MOC控制整流管(MCD)的出現,開發出把器件芯片與控制電路、驅動電路、過壓、過流、過熱和欠壓保護電路以及自診斷電路組合,并密封在同一絕緣外殼內的智能化電力半導體模塊,即IPM。   為了更進一步提高系統的可靠性,適應電力電子技術向高頻化、小型化、模塊化發展方向,有些制造商在IPM的基礎上,增加一些逆變器的功能,將逆變器電路(IC)的所有器件都以芯片形式封裝在一個模塊內,成為用戶專用電力模塊(ASPM),使之不再有傳統引線相連,而內部連線采用超聲焊、熱壓焊或壓接方式相連,使寄生電感降到最小,有利于裝置高頻化。一臺7.5KW的電機變頻裝置,其中ASPM只有600×400×250(mm)那么大,而可喜的是,這種用戶專用電力模塊可按應用電路的不同而進行二次設計,有很大的應用靈活性。但在技術上要把邏輯電平為幾伏、幾毫安的集成電路IC與幾百安、幾千伏的電力半導體器件集成在同一芯片上是非常困難的。雖然目前已有1.5KW以下的ASPM出售,但要做大功率的ASPM,還需要解決一系列的問題,因此迫使人們采用混合封裝形式來制造適用于各種場合的集成電力電子模塊(IPEM),IPEM為新世紀電力電子技術的發展開了新途徑。   智能晶閘管模塊   晶閘管和整流二極管模塊主要指各種電聯接的橋臂模塊和單相整流橋模塊,晶閘管模塊經過近30年的開發和生產,目前制造這種系列模塊的技術已相當成熟,生產成品率也相當高,使用亦很普遍和成熟,已成為電力調控的重要器件,因此這里不再介紹。   晶閘管智能模塊就是ITPM(Intelligent thyristor power module)把晶閘管主電路與移相觸發系統以及過電流、過電壓保護傳感器共同封閉在一個塑料外殼內制成。由于晶閘管是電流控制型電力半導體器件,所以需要較大的脈沖觸發功率才能驅動晶閘管,又加其它一些輔助電路的元器件,如同步電流的同步變壓器等體積龐大,很難使移相觸發系統與晶閘管主電路以及傳感器等封裝在同一外殼內制成晶閘管智能模塊。因此,世界上一直沒有擺脫將晶閘管器件與門極觸發系統分立制作的傳統形式。   山東淄博臨淄銀河高技術開發有限公司,經多年的開發研究,解決了同步元器件微型化問題,使之適合集成應用之后,繼而解決了提高信號幅度、抗干擾、高壓隔離和同步信號輸入等問題,并研制開發出高密度的功率脈沖變壓器和多路高速大電流IC,以及兩種適合集成模塊專用IC。在采用了導熱、絕緣性能良好的DCB板、鉬銅板,具有良好電絕緣和保護性能和良好熱傳導作用的彈性硅凝膠等特殊材料后,開發出多種具有各種功能的晶閘管智能模塊,如三相、單相集成移相調控晶閘管智能交流開關模塊,帶過零觸發電路的三相、單相交流開關模塊等。   圖1為晶閘管智能三相橋模塊的內部接線圖(a)及其它外形照片(b),還有晶閘管智能電機控制模塊,解決了一直未能實現的晶閘管主電路與移相觸發系統以及保護取樣傳感器共同封裝在一個塑料外殼內的難題。臨淄銀河公司研制出模塊最大工作線電流為1600A(RMS),額定工作電壓為380V和600V,已用于交流變頻、交直流電氣傳動以及三相交流固態開關和恒壓、恒流電源等領域。 圖1   IGBT智能模塊   上世紀80年代初,IGBT器件的研制成功以及隨后其額定參數的不斷提高和改進,為高頻、較大功率應用范圍的發展起到了重要作用,由于IGBT模塊具有電壓型驅動,驅動功率小,開關速度高,飽和壓降低和可耐高電壓和大電流等一系列應用上的優點,表現出很好的綜合性能,已成為當前在工業領域應用最廣泛的電力半導體器件。其硬開關頻率達25KHz,軟開關頻率可達100KHz。而新研制成的霹靂型(Thunderbolt)型IGBT,其硬開關頻率可達150KHz,諧振逆變軟開關電路中可達300KHz。   目前,IGBT封裝形式主要有塑料單管和底板與各主電路相互絕緣的模塊形式,大功率IGBT模塊亦有平板壓接形式。由于模塊封閉形式對設計散熱器極為方便,因此,各大器件公司廣泛采用。另一方面,IGBT模塊生產工藝復雜,制造過程中要做十幾次精細的光刻套刻,并經相應次數的高溫加工,因此要制造大面積即大電流的IGBT單片,其成品率將大大降低。可是,IGBT的MOS特性,使其更易并聯,所以模塊封裝形式更適合于制造大電流IGBT。起初由于IGBT要用高阻外延片技術,電壓很難突破,因為要制造這樣高壓的IGBT,外延厚度就要超過微米,這在技術上很難,且幾乎不能實用化。   1996年日本多家公司采用<110>晶面的高阻硅單晶制造IGBT器件,硅片厚度超過300微米,使單片機IGBT的耐壓超過2.5KV,因此,同年東芝公司推出的1000A/2500V平板壓接式IGBT器件就是由24個80A/2500V的芯并聯組成。   1998年ABB公司采用在陽極側透明(Transparent)P+發射層和N-層緩沖層結構,使IGBT模塊的耐壓高達4.5KV,而該公司同年研發成的1200A/3300V的IGBT模塊就是由20個IGBT芯片和12個FWD芯片并聯制成。此后,非穿通(NPT)和軟穿通(SPT)結構IGBT的試制成功,使IGBT器件具有正電阻溫度系數,更易于并聯,這為高電壓、大電流IGBT模塊的制造只需并聯無需串聯創造了技術基礎。目前,已能批量生產一單元、二單元、四單元、六單元和七單元的IGBT標準型模塊,其最高水平已達1800A/4500V。圖2為300A/1700V IGBT模塊的電路圖,它是由4個160A/1700V IGBT芯片和8個100A/1700V快恢復二極管組成。 圖2 圖3   但是隨著模塊頻率的提高和功率的增大,內部寄生電感較大的一般IGBT模塊結構,已不能適應應用的需要。為了降低模塊內部的裝配寄生電感,使器件在開關時產生的過電壓最小,以適應調頻大功率IGBT模塊封裝的需要,ABB公司開發出一種如圖3所示的平面式低電感模塊(ELIP)的新結構,該結構與一般傳統結構的主要區別在于:(1)它采用很多寬而簿的銅片重疊形成發射極端子和集電極端子,安裝時與模塊銅底板平行,并采用等長平行導線直接從IGBT發射極連到發射極端子上,而集電極端子則連到DBC板空間位置上,從而消除了互感,限制了鄰近效應,降低了內部寄生電感量;(2)許多并聯的IGBT和FWD芯片都焊在無圖形的DBC板上,且IGBT的發射極和FWD的陽極上焊有鉬緩沖片,IGBT的柵極與柵極均流電阻鋁絲鍵合相連,這樣使芯片間的電流分布和整流電壓條件一致,有利于模塊芯片能在相同溫度下工作,大大提高了模塊出力和可靠性;(3)模塊采用堆積式設計,把上下絕緣層、上下電極端子以及印制電路板相互疊放,并用粘合膠粘合在一起(粘合時要避免氣泡),能很好地隨溫度循環,無需考慮所謂焊應應力,即所謂的電極“S”形設計。   由于MOS結構的IGBT是電壓驅動的,因此驅動功率小,并可用IC來實現驅動和控制,進而發展到把IGBT芯片、快速二極管芯片、控制和驅動電路、過壓、過流、過熱和欠壓保護電路、箝位電路以及自診斷電路等封裝在同一絕緣外殼內的智能化IGBT模塊(IPM),它為電力電子逆變器的高頻化、小型化、高可靠性和高性能創造了器件基礎,亦使整機設計更簡化,整機的設計、開發和制造成本降低,縮短整機產品的上市時間。由于IPM均采用標準化的具有邏輯電平的柵控接口,使IPM能很方便與控制電路板連接。IPM在故障情況下的自保護能力,降低了器件在開發和使用的損壞,大大提高了整機的可靠性。

2013
05-27

雙閉環直流調速模塊的原理及應用

  一、前言:   晶閘管直流傳動70年代前后在我國得到大力的推廣和應用,經過30多年的發展歷史,還停留在分立器件的基礎上,體積大,接線復雜,使用極不方便而且價格昂貴。我公司開發的雙閉環直流調速模塊,本著集成和使用方便的原則將直流調速系統模塊化。先進的工藝流程和高性能的電路設計大大提高了模塊的使用壽命和可靠性,而且性價比很高,為直流調速領域增添了新的活力。   二、模塊內部的電路構成   本模塊內含功率晶閘管、移相控制電路、轉速電流雙閉環調速電路、積分電路、電流反饋電路、以及缺相和過流保護電路,其方框圖見圖1。 圖1 圖2   (一)功率晶閘管完成變流及功率調整,采用進口方形芯片、高級芯片支撐板,經特殊燒結工藝,保證焊接層無空洞,使用DCB板及其它高級導熱絕緣材料,導熱性能好,基板不帶電,使用安全可靠。熱循環次數超過國家標準近10倍,具有很長的使用壽命。   (二)積分環節可實現直流電機軟起動,并且起動時間可調,設計時給用戶預留兩個端口,其連接如圖6,調節兩個電位器,可改變積分時間長短,從而達到改變電機起動時間的目的。積分環節適用于起動過渡過程平穩的場合,如高爐卷揚機、礦井提升機、冷熱連軋機等。當輸入為階躍信號時,通過給定積分器變換成有一定斜率的線性漸變輸出信號,作為速度調節器的給定輸入,給定積分器的穩定輸出即為電機的速度給定,給定積分器輸出的變化斜率即為電機的加速度,其啟動電流波形圖見圖2。如果用戶要求在負載一定的條件下,電機以最大的等加速度起動,可把積分環節去掉,模塊留出兩個端口作為電流環和速度環的輸出限幅(如圖6),調節電流環的輸出限幅,改變電機的最大起動電流,獲得理想的過渡過程。其起動電流波形圖見圖3。   (三)轉速電流雙閉環電路 速度調節及抗負載和電網擾動,采用雙PI調節器,可獲得良好的動靜態效果。設計過程采用“二階最佳”參數設計法設計,結合系統動靜態效果選擇最佳參數。從抑制超調的觀點出發,電流環校正成典型I型系統。為使系統在階躍擾動時無穩態誤差,并具有較好的抗擾性能,速度環設計成典型II型系統。   內外環對數幅頻特性的比較,圖4畫出了電流環和轉速環的開環對數幅頻特性: 圖3 圖4   從上圖可以看出,圖中轉折頻率和截止頻率點一個比一個小,這是一個必然的規律。這樣設計的雙環系統,外環總比內環慢。一般來說,調整過程一般是先外環后內環,電流環要想提高系統的動態效果,可增大電流環阻容端的電阻,但要減小電容,其關系是C1*0.03/R1。速度環要想提高動態效果,從典型II型系統的各項指標中得出,它的動態效果是一個中間的參數,需要反復調試,增大電阻R2可提高系統的穩態精度,相應的減小電阻可獲得良好的動態效果,具體情況可根據用戶的系統參數要求調節,其關系是C2 0..87/R2(電流超調量<=5),模塊設計過程留出四個端口(其聯接如圖6),作為速度環和電流環的阻容端,用戶可根據實際情況調節。   (四) 電流反饋 采用國外進口霍爾傳感器,并置于模塊內部。主要完成電流信號的取樣,具有極高的線性度,簡化了系統的外圍器件。   (五)保護電路 模塊內部設置過流和缺相保護電路,保證了電機的安全運行,而且留出一個端口作為過流保護給定信號輸入(其聯接如圖6),用戶可以根據自己設備的過載能力調節,更加突出了本模塊的使用靈活性。   三、模塊的應用   電流轉速雙閉環調速電路,因其具有極高的調速范圍、很好的動靜態性能及抗擾性能,在調速領域得到廣泛的應用。   本模塊以應用到造紙、擠塑、印染及其他直流調速領域,效果很好。   實驗條件:模塊為MSZ—ZLTS—400,直流電動機:Ued=220V,Ied=41A,Ned=1500r/min,允許過載倍數為1.5。   實驗結果:速度超調量Vp<5%,電流超調量Ip<0.5%,調整時間Ts<0.5S,振蕩次數H<=2,轉速穩定度Vb<=0.02,轉速穩定度Vs<0.5%(如圖5) 圖5 圖6   四、結束語 本系統設計成模塊的形式:集成度高,體積小,接線方便,調節簡單,運行安全可靠,并且具有通用性,即同一種模塊參數相同,使用非常方便。

2013
05-27

數字式智能電機控制模塊

  一、概述   眾所周知,三相交流異步電動機以其低成本,高可靠性和易維護等優點在各行業中廣泛應用。但是,它在直接起動時,存在著很大的缺點:首先,它的起動電流高達額定電流的5-7倍,這需要電網有很大的裕量,而且降低了電器控制設備的使用壽命,増加維護成本,甚至影響了其它電氣設備的正常運行;其次,起動轉矩可達正常轉矩的2倍,這會對負載產生沖擊,增加傳動部件的磨擦和額外維護。因為以上原因,出現了三相異步電動機降壓起動設備。   傳統的降壓起動有以下幾種方法:   1、在電動機定子回路中串入電抗器,使一部分電壓降在電抗器上;   2、星形-三角形轉換降壓起動(Y -△)。電機起動時接成星形,起動結束后,通過一個轉換器變成三角形接法;   3、起動補償器起動(自耦變壓器起動)。   傳統的起動設備體積龐大,成本高,結構復雜,與負載匹配的電機轉距很難控制,也就是說很難得到合適的起動電流和起動轉距;而且在切換瞬間會產生很高的電流尖峰,由此產生的機械振動會損害電機轉子、軸連接器、中間齒輪以及負載。   因此,就需要有一種能克服傳統起動缺點的起動裝置。由銀河公司開發生產的捷普牌新一代數字式智能電機控制模塊,不但完全克服了傳統起動的缺點,對各種起動方法做了進一步的改善和提高,另外還增加了很多其他功能,比如: 節能運行,過流保護,過熱保護,缺相保護等等。   這種模塊采用數碼管顯示、按鍵控制,整個起動過程全部由單片機按照預先設定自動完成,所以操作起來極其方便。   用戶通過按鍵調整參數設置,可以按實際情況選擇不同的起動方式,能夠很方便地控制起動電流,得到與負載相匹配的電機轉矩。   二、模塊內部結構及電氣原理   模塊內部結構如圖1。從圖中可以看出,該模塊的主電路與相控電路及單片機共同封裝于同一殼體內,同時內置多個電流、電壓傳感器。用接插件將模塊與控制盒連接在一起,實現各種功能的設置和顯示。 圖 1   主電路為6只玻璃鈍化方形晶閘管芯片,通過一體化焊接技術,將其貼在DBC(陶瓷覆銅板)上,并與導熱銅板焊接在一起。模塊使用時,導熱銅板與散熱片通過導熱硅脂緊密接觸。這種結構使模塊具有很高的絕緣性能和散熱性能。   圖2是模塊電氣原理方框圖。移相電路部分是銀河公司自主開發的JP-SSY01數字移相集成電路。該電路為SOP28封裝,5V單一電源供電,全數字化處理方式,具有很高的移相精度、對稱度。對控制端加0-10V電平信號,即可控制移相角度。   同步變壓器輸出同步信號給移相電路,其中一路另外分給單片機,作為單片機采集電壓、電流信號的基準。這樣,就克服了如果交流電頻率變化帶來的計算誤差,提高了計算精度。   傳感器包括兩種:電壓傳感器和電流傳感器。兩種傳感器中均使用了霍爾元件,具有體積小、反應快、線形度高的特點,通過與模塊結構的一體化設計方便地置于模塊內部。兩種傳感器將電壓模擬量、電流模擬量傳給12位高速A/D轉換器,通過A/D轉換,將相應的數字量傳給單片機,以備單片機進行處理。   顯示、控制部分采用串行口與單片機進行通訊,這種通訊方式大大減少了該部分與模塊內部的連線。5個數碼管顯示、8個按鍵控制,使顯示與控制直觀、方便。   三、主要功能   智能電機控制模塊主要能夠完成以下功能:   1、電壓斜坡起動   2、限流起動   3、電壓突跳功能   4、軟停車   5、節能運行   6、過流、過熱、缺相保護   分別介紹如下:   1、電壓斜坡起動   如圖3,系統首先加一個電壓Us到電機上,之后電壓線性上升,從Us增 加到最大電壓Umax。此時,加到電動機端子上的電壓等于電網輸入電壓。Us由用戶設定,可供用戶選 擇的電壓為80-300 V。Ts由用戶設定,可以在1-90秒中選擇。在實際使用中,用戶根據實際情況,例如電機功率大小、負載大小等,選擇合適的參數,達到最佳起動效果。   這種起動方式的特點是起動平穩,可減少起動電流對電網的沖擊,同時大大減輕起動力矩對負載帶來的機械振動。   2、限流起動   如圖4,這種起動方式是由用戶設定一電流值Ik,在整個起動過程中,實際電流不超過設定值Ik。Ik由用戶根據實際負載大小自己設定。   限流起動可以使大慣性負載以最小電流被起動加速,可以用來設置電流上限,滿足電網容量在有限場合的使用。這種起動方式特別適合于恒轉矩負載。   3、電壓突跳功能   實際應用中,很多負載具有很大的靜摩擦力;而在電壓斜坡起動方式中,電壓是由小到大逐漸上升的。如果直接使用電壓斜坡方式起動,在起動開始的一段時間內,因所加電壓太小,克服不了負載的靜摩擦力,電機不動,造成因發熱而損壞電機的情況。電壓突跳功能則解決了這個問題。在電機起動前,模塊先輸出一電壓Ut, 且持續一段時間Tt, 用以克服靜摩擦力,待電機轉動之后,再按照原設定方式起動,從而比較好地保護了電機。對于不需要該功能的負載,只要在設定中將Tt設置為0即可。Ut可調整,范圍是0-380V,Tt可調整,范圍是0-10秒(如圖5)。   4、軟停車   如圖6,按下停車鍵后,模塊的輸出電壓立即下降到Up1,然后逐漸下降,經過時間Tp后,下降到Up2,再立即下降到0。Up1可調整,范圍是100-380V;Up2可調整,范圍是0-300V;Tp調整的范圍是0-90秒。   這種軟停車可以大大減少管道設備中液體的沖擊。   5、節能運行   對于大磨擦負載,由于所需起動電流大,需要功率較大的電動機,而正常負載所需運行負載力矩比電動機額定轉矩小的多,這就造成電動機輕載運行。對于間歇性負載,維持大電流的工作時間占整個周期很小一部分,造成輕載無功損耗浪費,使運行功率因數大大降低。智能電機控制模塊通過檢測電壓和電流,判斷加到電機上的負載大小,根據負載大小自動調節輸出電壓,使電機工作在最佳效率工作區,達到節能目的。   6、保護功能   共有三種保護功能:過流保護,過熱保護,缺相保護。   在起動或者運行過程中如果出現上述三種故障之一,模塊會自動斷電,控制盒上的數碼管會閃爍顯示故障原因,待排除故障以后,按復位鍵即可恢復正常。   在上述保護中,過流保護值可調。   四、實驗情況及實際應用介紹   我們對一只正在使用中的智能電機控制模塊進行了實際測量并作了記錄。   所用負載為18.5KW風機,電壓實際測量值為390V左右。   為了作一個比較,首先拆掉模塊進行直接起動。   合上空氣開關以后,電壓立即上升到390V,電流快速上升到150A,持續一段時間,逐漸下降,最后穩定在30A左右。同時,可清楚地聽到由于大電流沖擊,風機產生強烈的機械振動所發出的聲音。   然后接上智能電機控制模塊,設置為限流方式起動,限流值為90A,打開節能運行。   按下“起動”鍵,可觀測到電流上升速度明顯變慢,逐漸上升到90A,保持2-3秒后,逐漸下降為30A。電壓由0V緩慢上升到390V。起動時間為6秒。在整個起動過程中,電機起動平穩,聽不到機械沖擊的聲音。   15秒后,電壓逐漸下降為355V,電流不變,開始穩定運行。   數字式智能電機控制模塊現已廣泛應用于各種生產領域和其它場合,現介紹如下:   1、降低電動機起動電流(一般交流電動機直接起動時,沖擊電流是額定電流的5-7倍);   2、避免電動機起動時供電線路產生瞬間電壓跌落,造成設備、儀表誤動作;   3、防止起動時產生力矩沖擊,而使機械斷軸或產生廢品;   4、可以較頻繁地起動電動機(軟起動裝置一般允許10次/小時,而使電動機不致過熱);   5、對泵類負載可以防止水錘效應,防止管道破裂;   6、對某些工藝應用(如染紗機械),可防止由于起動過快而產生染色不勻造成質量問題;   7、對某些易碎的容器灌漿生產線,可防止容器破損;   8、需要控制起動電流,減少對機械的沖擊,同時也可適應較低容量供電變壓器的場合(如注塑機);   9、可以降低電網適配容量,節省增容費開支;   10、需要方便地調節起動特性的場合。   由以上看出,數字式智能電機控制模塊集電機起動、節能運行、保護于一體。突出特點是體積小、功能強、安裝方便、操作簡單、免維護、可靠性高,是傳統起動設備的理想換代產品。   參考文獻:   1、《半導體變流技術》(第2版) 上海機械高等專科學校 莫正康 主編   2、《計算機控制技術與應用》 湘潭機電高等專科學校、哈爾濱工業大學威海分校   劉國榮 梁景凱 主編   3、《智能電機控制模塊使用說明書》(第2版本) 淄博市臨淄銀河高技術開發有限公司